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Abstract

Experimental evidence shows that effective quantum controls in diverse applications appear surprisingly easy to find. The underlying reasons
for this attractive behavior are explored in this work through an examination of the quantum control landscape of 〈O(T )〉 = Tr(ρ(T )O) directly
in terms of the physically relevant control field ε(t) and the density matrix ρ(T ) at the target time T, including an elaboration of the topology
around the critical points, where δ〈O(T )〉/δε(t) = 0 ∀t, of an arbitrary physical observable O. It is found that for controllable quantum systems
the critical points of the landscape 〈O(T )〉 correspond to the global maximum and minimum and intermediate saddle points of 〈O(T )〉. An upper
bound is shown to exist on the norm of the slope δ〈O(T )〉/δε(t) anywhere over the landscape, implying that the control landscape has gentle
slopes permitting stable searches for optimal controls. Moreover, the Hessian at the global maximum (minimum) only possesses a finite number
of negative (positive) non-zero eigenvalues and the sum of the corresponding eigenvalues is bounded from below (above). The number of negative
eigenvalues of the Hessians evaluated at the saddle points drops as the critical point value 〈O(T )〉 becomes smaller and finally converts to all
positive non-zero eigenvalues at the global minimum. Collectively, these findings reveal that (a) there are no false traps at the sub-optimal extrema
in the landscape, (b) the searches for optimal controls should generally be stable, and (c) an inherent degree of robustness to noise exists around
the global optimal control solutions. As a result, it is anticipated that effective control over quantum dynamics may be expected even in highly
complex systems provided that the control fields are sufficiently flexible to traverse the associated landscape.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, much development has occurred in controlling atomic, molecular, and condensed phase phenomena, based on
the coherent nature of quantum dynamics [1–3]. The progress can be attributed to several key factors, including the introduction
of optimal control concepts into quantum dynamics [4–8], the use of increasingly powerful computers, and advances in ultrafast
lasers and pulse shaping technology [9]. In order to achieve control, constructive and destructive quantum wave interferences may
be actively manipulated by properly shaped electromagnetic (laser) pulses. A shaped pulse acts as a photonic reagent tailored to the
particular objective for achieving the highest quality controlled quantum dynamics. The technology for ultrafast laser pulse shaping
is rapidly evolving to meet the ever-increasing list of control applications, and the introduction of closed-loop learning control
techniques [8] in the laboratory has facilitated the realization of many control experiments [10–18]. These experiments include
manipulating electronic excitation [10,11], performing selective chemical fragmentation and rearrangement [12–14], compressing
optical pulses [15], tailoring high harmonic generation[16], creating ultra-fast optical switches [17], and redirecting energy transfer
in bio-molecules [18].

Perhaps the most significant general experimental finding is the evident ease of rapidly determining successful controls ε(t) while
searching through the high dimensional space of pulse shaper phases and amplitudes. Furthermore, excellent robustness to laser
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noise is evident especially in some of the highly nonlinear control processes. This positive behavior is holding true even for systems
of high complexity. Thus, a basic question is what makes quantum control experiments apparently easy to perform? Explaining
why quantum control beats the curse of dimensionality (i.e., overcomes the anticipated exponentially growing effort required when
searching over increasing numbers of control variables) should give insight into the classes of feasible quantum control experiments
in the future, especially those involving complex molecules and materials.

Quantum control experiments are performed as searches over a landscape defined as the observable as a functional of the control
field. A typical sequence of experiments searching for an effective control entails taking a guided trajectory over the landscape
in an effort to identify a high quality extremum value for the observable. The topological features of quantum control landscapes
are important for understanding the success of such control searches. An initial study was performed for the control landscape of
the transition probability Pi→f of going from the state |i〉 to the state |f 〉 [19–22]. From an examination of the landscape critical
points where δPi→f /δε(t) = 0 ∀t, it was found that no false extrema or traps exist in the quantum mechanical transition probability
landscape for controllable quantum systems under clean operating conditions (i.e., little noise or decoherence). Furthermore, the
Hessian δ2Pi→f /δε(t)δε(t′) for an N-level quantum system, evaluated at an optimal control field, was shown to have no more than
2N − 2 non-zero eigenvalues whose associated eigenvectors determine the important control variables [21,22]. Although Pi→f is a
special observable, these findings provide a clear hint at why controlling quantum phenomena is relatively easy to achieve, despite
the large numbers of control variables being searched over.

Building on the latter findings, it is important to go beyond Pi→f and address the landscape for more general observables of
quantum systems initially prepared at finite temperature, or other mixed states, in order to provide an understanding of control
experiments carried out under common laboratory conditions. For example, an initial thermal Boltzmann distributed quantum
mixed-state ensemble requires the quantum dynamics be described in terms of the density matrix ρ(t) [23]. As a result, the control
landscape is the expectation value 〈O(T )〉 = Tr (ρ(T )O) of the physical observable operator O, where T is the target time (i.e.,
either finite or asymptotic). The aim of this paper is to carry out an analysis of the optimal control landscape 〈O(T )〉 specified as
a functional of the control field ε(t). Particular attention will be given to analyzing the nature of the critical (stationary) points of
〈O(T )〉 over the control landscape to address the ease of performing control experiments. The present analysis will assume complete
density matrix controllability, implying that any mixed quantum state ρ(T ) in the same kinematical equivalence class as the initial
one ρ(0) can be reached dynamically [24]. In particular, ρ(T ) = U(T, 0)ρ(0)U†(T, 0), where U(T, 0) is an arbitrary unitary matrix
attainable under full controllability fromU(0, 0) = 1. More complex circumstances can arise, including the presence of decoherence
processes. Nevertheless, the analysis here provides the basis for assessing the essential features of controlling quantum phenomena.
Prior work explored the controllability and kinematical bounds on the optimization of 〈O(T )〉 [24–26], and the present work will go
further to examine the topology of the full landscape.

Treating the control field ε(t) as an arbitrary continuous temporal function implies that the search to maximize 〈O(T )〉 is formally
over an infinite dimensional space. However, in the laboratory, the control field is always discretized in some fashion in either
the time or the frequency domain. The number of discrete control variables can still remain very high (e.g., hundreds of phase
and amplitude frequency domain controls are often employed). Thus, regardless of the representation used for the control, the
optimization of 〈O(T )〉 generally entails a search through a high dimensional control space for an optimal field. With no further
information available, the natural expectation is that the control landscape would likely have a highly complex topology with
perhaps many maxima, minima, and saddle points. In particular, it is reasonable to expect that local landscape extrema would exist
capable of adversely trapping the search for the objective at various suboptimal values of 〈O(T )〉. As a result, it is important to
understand the topology of the underlying control landscape, especially the gradient throughout the landscape and the Hessian
evaluated at the critical points where the gradient is zero. The signs and zeros of the Hessian eigenvalues can identify whether
the critical points are local traps or saddle points, as well as provide information on the robustness of the global extrema to
field noise.

Initial studies were recently undertaken to explore the topological structure of 〈O(T )〉 for controllable finite-dimensional quantum
systems, based on (i) the unitary evolution expressed in terms of the action matrix A via the relation U(T, 0) = exp(ıA) [27], and
(ii) using the matrix elements of the unitary matrix U(T, 0) as variables [28]. It was found that only a finite number of distinct
critical point values of 〈O(T )〉 exist, depending on the eigenvalues of the density matrix and observable operator. The latter study
also explicitly revealed the signs of the Hessian eigenvalues at each critical point, thus, the number of downward, upward, and flat
directions on the neighboring landscape. These studies provided valuable information about the control landscape, although their
abstract nature left wanting an explicit connection to the control field ε(t), which is naturally the true function being varied in the
laboratory. The present paper will explicitly work with the control field ε(t) to make the landscape analysis transparent in a physical
context.

Section 2 describes the general formulation of the quantum control landscape 〈O(T )〉. A necessary and sufficient condition
for the existence of the critical points of 〈O(T )〉 and the corresponding local topology around the critical points are described. In
addition, a simple expression is given for enumerating critical point values of 〈O(T )〉. Section 3 considers the landscape within the
electric dipole approximation, including bounds on the landscape slope and curvature, rank analysis of Hessian at various critical
(maximum, minimum, saddle) points, and quantum control robustness analysis at the global maximum. Finally, a summary is given
Section 4.



228 T.-S. Ho, H. Rabitz / Journal of Photochemistry and Photobiology A: Chemistry 180 (2006) 226–240

2. Topology of general quantum control landscapes

For a general controllable N-level quantum system, the expectation value of a Hermitian observable operator O at some time T
can be written as follows [23,27,28]

〈O(T )〉 = Tr (ρ(T )O) = Tr
(
U(T, 0)ρ(0)U†(T, 0)O

)
, (1)

or equivalently as

〈O(T )〉 = Tr
(
U†(T, 0)OU(T, 0)ρ(0)

)
= Tr (O(T )ρ(0)) (2)

where O(t) ≡ U†(t, 0)OU(t, 0). The density operator ρ(t) is given as

ρ(t) =
∑
α

|ψα(t)〉wα 〈ψα(t)|, (3)

in terms of a set of positive real numbers 0 ≤ wα ≤ 1 with
∑
α wα = 1 and normalized pure quantum states |ψα(t)〉 with

〈ψα(t)|ψα(t)〉 = 1.0. Here wα denotes the probability of finding the system in the pure quantum state |ψα〉 = |ψα(0)〉 of the initial
ensemble and each pure quantum state |ψα(t)〉 at the time t is connected to the initial one |ψα〉 by the relation |ψα(t)〉 = U(t, 0)|ψα〉.
The propagator U(t, 0) and its adjoint U†(t, 0), respectively, satisfy the time-dependent equations

ı�
∂U(t, 0)

∂t
= H(t)U(t, 0), U(0, 0) = 1, (4)

and

−ı�∂U
†(t, 0)

∂t
= U†(t, 0)H(t), (5)

where the time-dependent Hamiltonian H(t) is in general a nonlinear function (involving the dipole moment, polarizability, hy-
perpolarizability, etc.) of the control field ε(t). For example, within the electric dipole approximation, the Hamiltonian has the
form

H(t) = H0 − µ · ε(t) (6)

where the unperturbed Hamiltonian is H0 and the dipole moment operator is µ.
It can be shown that the density operator ρ(t) satisfies the von Neumann equation

ı�
∂ρ(t)

∂t
= [H(t), ρ(t)], (7)

with [A, B] = AB − BA. The density operator possesses the following properties:

Tr(ρ(t)) =
∑
i

〈i|
(∑

α

|ψα(t)〉wα〈ψα(t)|
)

|i〉 =
∑
α

wα

(∑
i

〈ψα(t)|i〉〈i|ψα(t)〉
)

=
∑
α

wα = 1, (8)

Tr(ρ2(t)) =
∑
i

〈
i

∣∣∣∣∣∣
⎧⎨
⎩
(∑

α

|ψα(t)〉wα〈ψα(t)|
)⎛

⎝∑
β

|ψβ(t)〉wβ〈ψβ(t)|
⎞
⎠
⎫⎬
⎭
∣∣∣∣∣∣ i
〉

=
∑
α

∑
β

wαwβ|〈ψα|ψβ〉|2 ≤
∑
α

∑
β

wαwβ =
(∑

α

wα

)2

= 1, (9)

where the equality in Eq. (9) holds for the system being in a pure state. The observable O = UO�
O(0)U†

O and the initial density
operator ρ(0) = Uρ�

ρ(0)U†
ρ may be expressed in diagonal form via the unitary matrices UO and Uρ, respectively, and we may order

the eigenvalues as �O
1 (0) ≥ �O

2 (0) ≥ · · · ≥ �O
N (0) and �ρ

1(0) ≥ �
ρ
2(0) ≥ · · · ≥ �

ρ
N (0) ≥ 0. From Eq. (9), we can establish the

following inequality for the norm of the diagonal matrix ‖�ρ(0)‖:

0 < �
ρ
1(0)

2 ≤ ‖�ρ(0)‖2 ≡
∑
k

{
�

ρ
k (0)

}2 = Tr
(
�ρ(0)�ρ(0)

) = Tr
(
U†

ρρ(0)ρ(0)Uρ

)

= Tr (ρ(0)ρ(0)) = Tr
(

(U†(T, 0))ρ(t)ρ(t(U(T, 0)))
)

= Tr (ρ(t)ρ(t)) ≤ 1, (10)
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which will be of use later. Here the matrix norm ‖ · ‖ for an arbitrary square matrix A is defined as ‖A‖2 = ∑
i

∑
j |aij|2 [29]. With

these definitions it follows that

〈O(T )〉 = Tr
(
U†(T, 0)OU(T, 0)ρ(0)

)
= Tr

(
U†(T, 0)UO�

O(0)U†
OU(T, 0)Uρ�

ρ(0)U†
ρ

)

= Tr
(
U†

ρU
†(T, 0)UO�

O(0)U†
OU(T, 0)Uρ�

ρ(0)
)

=
∑
i

∑
j

�O
i (0)

∣∣∣〈i|U†
OU(T, 0)Uρ|j〉

∣∣∣2 �ρ
j (0), (11)

and furthermore 〈O(T )〉 is bounded by the relation (kinematical bounds) [25,30]

N∑
i=1

�O
N−i+1(0)�ρ

i (0) ≤ 〈O(T )〉 ≤
N∑
i=1

�O
i (0)�ρ

i (0). (12)

2.1. The functional relationship between the infinitesimal response of an observable to a Hamiltonian variation

Assessment of the topology of the landscape is facilitated by exploring how an infinitesimal functional change in the Hamiltonian
δH(t) results in an infinitesimal response in the observable δ〈O(T )〉. This infinitesimal functional relationship can be obtained by
first considering an arbitrarily functional change of U(t, 0) in Eq. (4) and then of O(t) ≡ U†(t, 0)OU(t, 0) to respectively give

∂

∂t
δU(t, 0) = 1

ı�
H(t)δU(t, 0) + 1

ı�
δH(t)U(t, 0) (13)

and

δO(t) = δU†(t, 0)OU(t, 0) + U†(t, 0)OδU(t, 0) (14)

From Eqs. (5) and (13) we arrive at

∂

∂t
(U†(t, 0)δU(t, 0)) = ∂U†(t, 0)

∂t
δU(t, 0) + U†(t, 0)

∂

∂t
δU(t, 0) = 1

ı�
U†(t, 0)δH(t)U(t, 0), (15)

thus

δU(t, 0) = − ı

�

∫ t

0
U(t, t′)δH(t′)U(t′, 0) dt′, (16)

for an infinitesimal functional change δU(t, 0), where the natural condition δU(0, 0) = 0 was used. From Eqs. (14) and (16), we then
obtain

δO(t) = [O(t), U†(t, 0)δU(t, 0)] = − ı

�

∫ t

0
[O(t), U†(t′, 0)δH(t′)U(t′, 0)] dt′, (17)

for an infinitesimal functional change δO(t).
From Eqs. (2), (16), and (17), we readily obtain the following first-order relation between the landscape variations δ〈O(T )〉 and

Hamiltonian variations δH(t):

δ〈O(T )〉 = − ı

�

∫ T

0
Tr([O(T ), U†(t, 0)δH(t)U(t, 0)]ρ(0)) dt =

∫ T

0
Tr

(
[O(T ), ρ(0)]

{ ı
�
U†(t, 0)δH(t)U(t, 0)

})
dt, (18)

where δ〈O(T )〉 ≡ Tr(δO(T )ρ(0)). The separation inside the trace of Eq. (18) into the product of two operators (i.e., [O(T ), ρ(0)] and
ı
�
U†(t, 0)δH(t)U(t, 0)) is important for enabling a full analysis of the control landscape critical point structure, which is described

in the following subsections. Eq. (18) can be further written as

δ〈O(T )〉 = Tr

(
[O(T ), ρ(0)]

(
ı

�

∫ T

0
U†(t, 0)δH(t)U(t, 0) dt

))
= −Tr

(
[O(T ), ρ(0)]U†(T, 0)δU(T, 0)

)
, (19)

which gives the functional relationship between infinitesimal responses δ〈O(T )〉 and variations δU(T, 0).
From Eq. (19), by taking the first-order derivative of 〈O(T )〉 with respect to the unitary matrix U(T, 0) in the U-coordinate space

(i.e., treating the matrix elements of U(T, 0) as independent variables), we obtain [28]

∂〈O(T )〉
∂Uij(T, 0)

= −〈j| [O(T ), ρ(0)
]
U†(T, 0)|i〉, (20)

or in matrix form,

∇U〈O(T )〉 = −
{

[O(T ), ρ(0)]U†(T, 0)
}T
, (21)
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where the superscript “T” denotes matrix transpose. The assumption of full controllability implies that anyU(T, 0) may be generated
by a suitable control. Since we require that the critical points, defined as ∇U〈O(T )〉 = 0, be valid for all U(T, 0), then Eq. (21) leads
to a necessary and sufficiently condition [O(T ), ρ(0)] = 0 for the critical points of 〈O(T )〉. This condition will also be arrived at
in the next subsection via an analysis in terms of controlled dynamics, thus providing a direct linkage to the control field ε(t) and
making the landscape analysis transparent in a physical context.

Using the relation δ2〈O(T )〉 = δ(δ〈O(T )〉) and from Eqs. (17) and (19), a second-order variation can be derived as

δ2〈O(T )〉 = Tr

(
[δO(T ), ρ(0)]

(
ı

�

∫ T

0
U†(t, 0)δH(t)U(t, 0) dt

))
+ Tr

(
[O(T ), ρ(0)]δ

(
ı

�

∫ T

0
U†(t, 0)δH(t)U(t, 0) dt

))

= − 1

�2

∫ T

0

∫ T

0
Tr

(
[[O(T ), U†(t, 0)δH(t)U(t, 0)], U†(t′, 0)δH(t′)U(t′, 0)]ρ(0)

)
dt dt′

+ Tr

(
[O(T ), ρ(0)]δ

(
ı

�

∫ T

0
U†(t, 0)δH(t)U(t, 0) dt

))
, (22)

which serves as a basis for a Hessian analysis.

2.2. Structure of the landscape critical points: general dynamical treatment

The topological details, especially those of the slope and curvature, of the landscape 〈O(T )〉 are important for understanding
the behavior of searches for effective control fields ε(t). In particular, the number of critical (stationary) points and the eigenvalue
structure of the corresponding Hessians at these points can determine the efficiency of the control search algorithms and the robustness
of the control process to noise. The critical point criterion can be established by first explicitly rewriting Eq. (18) as

δ〈O(T )〉 =
∫ T

0
Tr([O(T ), ρ(0)]B(t)) · δε(t) dt, (23)

where δH(t) = ∇εH(t) · δε(t) and B(t) ≡ (ı/�)U†(t, 0)∇εH(t)U(t, 0). From Eq. (23), the condition for the existence of a critical point
of 〈O(T )〉 is

δ〈O(T )〉
δε(t)

= Tr([O(T ), ρ(0)]B(t)) = 0 ∀t. (24)

Eq. (24) is demanded to be true for all possible critical points, and given that the system is controllable, it is reasonable to expect
that the elements of the skew-Hermitian matrix B(t) form a set of N2 linearly independent functions of time over 0 ≤ t ≤ T . Thus,
satisfaction of Eq. (24) generally requires that the criterion

[O(T ), ρ(0)] = 0 (25)

be satisfied [25]. In the electric dipole approximation given in Eq. (6), µ(t) ≡ U†(t, 0)µU(t, 0) = ı�B(t), and a finite N-level quantum
system is fully controllable if the rank of the Lie algebra generated by the skew-Hermitian matrices H0/ı� and −µ/ı� has dimension
N2 [31,32]. The complete controllability for the quantum system in turn implies that the dipole moment matrix elements 〈k|µ(t)|�〉
for k, � = 1, . . . , N form a set of N2 linearly independent functions of time [22].

The necessary and sufficient condition in Eq. (25) states that at a critical point of 〈O(T )〉 the Hermitian operators O(T ) and ρ(0)
commute with each other and therefore can be diagonalized by the same unitary operator Uρ, namely,

U†
ρρ(0)Uρ = �ρ(0) (26)

and

U†
ρO(T )Uρ = �O(T ), (27)

where Uρ is unitary, and both �ρ(0) and �O(T ) are diagonal. Eq. (27) can be further manipulated using O(T ) = U†(T, 0)OU(T, 0)

and �O(0) = U†
OOUO,

U†
ρU

†(T, 0)UO�
O(0)U†

OU(T, 0)Uρ = �O(T ). (28)

Eq. (28) shows that the diagonal matrices�O(0) and�O(T ) are similar and thus must consist of the same set of differently ordered
diagonal elements, i.e., in descending order for�O(0) and arbitrarily ordered for�O(T ). Specifically, the diagonal matrix elements
of �O(0) and �O(T ) must be linked by a simple permutation operation

�O(T ) = 	†�O(0)	, (29)
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or, equivalently,

�O
i (T ) = �O

p(i)(0), (30)

where 	 is the permutation matrix defined as

	 = U†
OU(T, 0)Uρ (31)

and p(i) = {i → p(i) : i = 1, 2, . . . , N} denotes any one of the permutations of N elements of the diagonal matrix �O(0). At each
critical point, since[O(T ), ρ(0)] = 0, the corresponding expectation value 〈O(T )〉 can be written as [25,28]

〈O(T )〉 = Tr(O(T )ρ(0)) = Tr(Uρ�
O(T )U†

ρUρ�
ρ(0)U†

ρ) = Tr(�O(T )�ρ(0)) =
∑
i

�O
i (T )�ρ

i (0) =
∑
i

�O
p(i)(0)�ρ

i (0),

(32)

where the descending eigenvalue orderings�O
1 (0) ≥ �O

2 (0) ≥ · · · ≥ �O
N (0) and�ρ

1(0) ≥ �
ρ
2(0) ≥ · · · ≥ �

ρ
N (0) have been adopted

in the derivations.
For an arbitrary permutation matrix 	, the propagator U(T, 0) leading to any critical point can be written as U(T, 0) = UO	U†

ρ,

cf. Eq. (31). In particular, at the global maximum of 〈O(T )〉, the right hand side of Eq. (12) corresponds to �O(T ) = �O(0) and
	 = 1, leading to the relationU(T, 0) = UOU†

ρ. This can be construed as the evolution operatorU(T, 0) over the time duration [0, T ]
acting to reflect knowledge ofUO andUρ, which simultaneously transforms both operators ρ(0) and O(T ) into diagonal matrices with
their eigenvalues arranged in complete descending order. In this regard, the underlying optimal control problem becomes a search
for an optimal control field that renders the unitary transformations UO and U†

ρ into the product UOU†
ρ = U(T, 0). This observation

is evident in the previous work on pure state Pi→f optimal control [22] where perfect population transfer, i.e., Pi→f (T ) = 1.0, is a
manifestation of the following operation

U†(T, 0)(|f 〉〈f |)U(T, 0) = U†
O(|f 〉〈f |)UO = |i〉〈i|, (33)

rearranging a set of ascending eigenvalues {0, . . . , 0, 1} associated with the Hermitian operator O = |f 〉〈f | into a desired descending
ones {1, 0, . . . , 0}. (Note that 	 = 1 at the maximum Pi→f (T ) = 1.0 and the eigenvalues of the density operator ρ(0) = |i〉〈i| are
already in the desired descending order {1, 0, . . . , 0} implying that Uρ = 1).

From Eq. (32), it is readily seen that the value of 〈O(T )〉 at its absolute highest and lowest extremum critical points is bounded,
consistent with the assessment given in Eq. (12). The upper bound

∑
i �

O
i (0)�ρ

i (0) is obtained when the permutation matrix 	
is the identity operator, i.e., 	 = 1 (or p(i) = i), thus U(T, 0) = UOU†

ρ, whereas the lower bound
∑
i �

O
N−i+1(0)�ρ

i (0) is obtained
when the permutation matrix 	 is anti-diagonal (or p(i) = N − i+ 1), thus rendering the matrix elements in complete ascending
orders, i.e., �O

1 (T ) = �O
N (0) ≤ �O

2 (T ) ≤ · · · ≤ �O
N (T ) = �O

1 (0). Other permutations result in local extrema whose topology (i.e.,
maxima, minima, or saddles) will be assessed in Section 3.2 for electric dipole coupling. In this regard (i.e., using Eq. (22)), the
second-order variations δ2〈O(T )〉 at the critical points can be succinctly written as

δ2〈O(T )〉 =
∫ T

0

∫ T

0

(
− 1

�2

)
Tr

([[
O(T ), U†(t, 0)δH(t)U(t, 0)

]
, U†(t′, 0)δH(t′)U(t′, 0)

]
ρ(0)

)
dt dt′. (34)

For the general case in which the matrix elements of �O(0) and �ρ(0) are distinct, i.e., �O
1 (0) > �O

2 (0) > · · · > �O
nO

(0) and

�
ρ
1(0) > �

ρ
2(0) > · · · > �

ρ
nρ (0), where nρ and nO are respectively the numbers of non-zero elements of �ρ(0) and �O(0), the

number of non-zero 〈O(T )〉 critical point values Nc depends on the possible combinations of these distinct, non-zero elements.
Using the combination and permutation expression in Eq. (32), it may then be deduced that

Nc =
n<∑
k=k1

nO!nρ!

(nO − k)!(nρ − k)!k!
, (35)

where n< = min{nρ, nO} and k1 = max{1, nO + nρ −N}, respectively, are the largest and smallest overlapping numbers of non-
zero eigenvalues of�ρ(0) and�O(0). All 〈O(T )〉 critical point values are non-zero if k1 ≥ 1, whereas they also contain zero values
if k1 ≤ 0. Each summand in Eq. (35) is a product of two terms: (1) nO!/(nO − k)!k!, the number of ways of combining arbitrary k
eigenvalues from a pool of nO non-zero eigenvalues of �O(0), and (2) nρ!/(nρ − k)!, the number of ways of permuting k non-zero
eigenvalues of �O(0) among nρ non-zero eigenvalues of �ρ(0).

The number of non-zero non-degenerate critical point values can readily be computed from Eq. (35) for general quantum
observables and arbitrary initial density matrices. The cases are: (i) nO > 1 and nρ = 1 then Nc = nO, corresponding for example
to when the control target is to maximize the molecular vibrational energy [25] (or the molecular alignment/orientation [33]) and
the molecule initially lies in its vibrational (or rotational) ground eigenstate; (ii) nO = 1 and nρ > 1 then Nc = nρ, corresponding
to when the control target state is a single pure molecular (ro-vibrational) energy eigenstate and the molecule is initially represented
by mixed quantum states (say, in thermal equilibrium with a bath at finite temperature [23,25]). Another extreme case (iii) is for
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the alignment/orientation control involving rotationally hot molecules [23], where both the target observable O (O = cos2 θ for the
alignment, O = cos θ for the orientation, where θ is the polar angle) and the initial density matrix ρ(0) (assuming a Boltzmann
distribution over all N rotational states) are of full rank i.e., nO = nρ = N, and the number of non-zero critical point values is then
Nc = N!. Finally, in a last example (iv) for the pure state Pi→f optimal control problem, where both the observable and initial
density matrix are of rank one, i.e., nρ = nO = 1, we obtain Nc = 1, which implies that only one nonzero extrema value exists,
corresponding to the global maximum Pi→f = 1.0. No false suboptimal critical points exist [19,20] for maximizing Pi→f when
no additional costs or restrictions on the controls are imposed. Analysis of the general situation involving possibly degenerate
eigenvalues of the operators O and ρ(0) has also been considered recently [27,28,34].

3. Landscapes within the electric dipole approximation

Within the electric dipole approximation, cf. Eq. (6), a functional change in the Hamiltonian is

δH(t) = −µδε(t), (36)

which, after substitution in Eq. (18), leads to

δ〈O(T )〉 =
∫ T

0

(
− ı

�

)
Tr

(
[O(T ), ρ(0)]{U†(t, 0)µU(t, 0)}

)
δε(t) dt. (37)

Here the electric field is considered as a scalar function corresponding to the common case of linear polarization. Likewise, at the
critical points, the second-order functional change δ2〈O(T )〉 in Eq. (34) becomes

δ2〈O(T )〉 =
∫ T

0

∫ T

0

(
− 1

�2

)
Tr

([[
O(T ), U†(t, 0)µU(t, 0)

]
, U†(t′, 0)µU(t′, 0)

]
ρ(0)

)
δε(t)δε(t′) dt dt′. (38)

3.1. Bound on the quantum control landscape slope

The magnitude of the landscape slope on the way towards an extremum is important in determining the efficiency and stability of
experimental searches for effective quantum controls. From Eq. (37), the slope (i.e., the first order functional derivative) of 〈O(T )〉
can be readily identified as

δ〈O(T )〉
δε(t)

= − ı

�
Tr ([O(T ), ρ(0)]µ(t)) = ı

�
Tr ([O(T ), µ(t)]ρ(0)) = ı

�

∑
i

�
ρ
i (0)〈i| (O(T )µ(t) − µ(t)O(T )) |i〉

= −2

�

∑
i

�
ρ
i (0)� (〈i|O(T )µ(t)|i〉) , (39)

where � denotes imaginary part and the ket |i〉 is an eigenstate of the density operator ρ(0), i.e., ρ(0)|i〉 = �
ρ
i (0)|i〉, at the initial

time. From Eq. (39) and invoking Hölder’s inequality for finite sums [35], we can derive the following:∣∣∣∣δ〈O(T )〉
δε(t)

∣∣∣∣
2

= 4

�2

∣∣∣∣∣
∑
i

�
ρ
i (0)� (〈i|O(T )µ(t)|i〉)

∣∣∣∣∣
2

≤ 4

�2

∑
i

|�ρ
i (0)|2 ×

∑
i

|� (〈i|O(T )µ(t)|i〉)|2

≤ 4

�2

∑
i

∣∣�ρ
i (0)

∣∣2 ×
∑
i

|〈i|O(T )µ(t)|i〉|2, (40)

which can be further written as∣∣∣∣δ〈O(T )〉
δε(t)

∣∣∣∣
2

≤ 4

�2 ‖�ρ(0)‖2 × ‖O(T )µ(t)‖2 ≤ 4

�2 ‖�ρ(0)‖2 × ‖O(T )‖2 × ‖µ(t)‖2 = 4

�2 ‖�ρ(0)‖2 × ‖O‖2 × ‖µ‖2 (41)

where the norm inequality ‖AB‖ ≤ ‖A‖ ‖B‖ for two arbitrary matrices A and B was invoked [29]. Moreover, ‖O(T )‖ = ‖O‖ and
‖µ(t)‖ = ‖µ‖ due to the unit norm of the time evolution operator. From Eq. (10), the upper bound of the gradient δ〈O(T )〉/δε(t) is
then given as∣∣∣∣δ〈O(T )〉

δε(t)

∣∣∣∣ ≤ 2

�
‖O‖ × ‖µ‖. (42)

As the norm ‖O‖ and ‖µ‖ are expected to be finite in realistic applications, the bound in Eq. (42) has the simple physical interpretation
that the landscape slope on the way towards an extremum, e.g., the global maximum, will be rather gentle without steep regions.
This behavior is especially important for assuring the stability of searches for an effective control.
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3.2. Quantum control landscape topology: Hessian evaluated at the critical points

The analysis in Section 2 shows that upon searching over unconstrained control fields a finite number of critical point values of
〈O(T )〉 exist such that δ〈O(T )〉/δε(t) = 0 ∀t. A prime topic of interest is the topology of the landscape in the vicinity of these critical
points. A detailed analysis of the Hessian eigenvalue structures, including the Hessian ranks, at and away from the global maximum
and minimum will be presented. Whether the suboptimal extrema are either local minima/maxima (i.e., traps) or saddles can greatly
influence the efficiency of the search and the effectiveness of the control algorithm. This topological analysis is also relevant for
consideration of robustness to control field noise at the final global maximum or minimum. The presentation in this subsection is
general, however the rank analysis at the critical points will only consider the non-degenerate cases in which all of the non-zero
matrix elements of �O(0) and �ρ(0) are distinct, i.e., �O

1 (0) > �O
2 (0) > · · · > �O

nO
(0) and �ρ

1(0) > �
ρ
2(0) > · · · > �

ρ
nρ (0). The

resultant ranks for the non-degenerate cases establish upper bounds for the general cases where the non-zero matrix elements of
�O(0) and �ρ(0) may assume the same values (i.e., degenerate cases).

From Eq. (38), the Hessian Hε(t, t′) ≡ δ2〈O(T )〉/δε(t)δε(t′) at each critical point can be expressed as

Hε(t, t′) = − 1

�2 Tr([[O(T ), µ(t)], µ(t′)]ρ(0)), (43)

which can be written in a fully symmetric form (see Appendix A)

Hε(t, t′) = − 2

�2

nρ∑
i=1

N∑
j>i

(
�

ρ
i (0) −�ρ

j (0)
)(
�O
p(i)(0) −�O

p(j)(0)
)

×
(
〈i|µρ(t)|j〉
〈i|µρ(t′)|j〉
 + 〈i|µρ(t)|j〉�〈i|µρ(t′)|j〉�

)
,

(44)

where 
 denotes real part, 〈i|µρ(t)|j〉
 ≡ 
(〈i|µρ(t)|j〉) and 〈i|µρ(t)|j〉� ≡ �(〈i|µρ(t)|j〉), with µρ(t) ≡ U†
ρµ(t)Uρ =

U†
ρU

†(t, 0)µU(t, 0)Uρ, thus ‖µρ(t)‖ = ‖µ(t)‖ = ‖µ‖. The double-sum in Eq. (44) only contains contribution from terms for which

the product (�ρ
i (0) −�

ρ
j (0))(�O

p(i)(0) −�O
p(j)(0)) is not zero. The Hessian Hε(t, t′) at any critical point is symmetric with respect

to t and t′, and a separable form in t and t′ in that the double-sum in Eq. (44) only involves the products of a finite number of
linearly independent real functions, 〈i|µρ(t)|j〉
 and 〈i|µρ(t)|j〉�, and similarly for t′. Considering these real functions as linearly
independent for different i and j is based on the assumption of complete controllability of the quantum system and the fact that µρ(t)

is related to the dipole moment operator µ(t) via a unitary transformation (i.e., µρ(t) ≡ U†
ρµ(t)Uρ). Consequently, the Hessian at

any critical point (including both the global maximum and minimum) possesses at most only RHε = nρ(2N − nρ − 1) non-zero
real eigenvalues σ1, σ2, . . . , σRHε (i.e., its rank is at most RHε ) together with infinitely many zero eigenvalues and the associated
eigenfunctions. The non-zero eigenvalues σ and eigenfunctions u(t) of the Hessian satisfy the following integral eigenvalue equation∫ T

0
Hε(t, t′)u(t′) dt′ = σu(t), (45)

where every eigenfunction u(t) may be expanded in terms of the linearly independent basis functions 〈i|µρ(t)|j〉
 and
〈i|µρ(t)|j〉�, 1 ≤ i ≤ nρ, 1 ≤ i < j ≤ N, as follows:

u(t) =
nρ∑
i=1

N∑
j>i

{
aij〈i|µρ(t)|j〉
 + bij〈i|µρ(t)|j〉�

}
, (46)

with the pairs of complex expansion coefficients aij and bij . Substitution of Eq. (46) into Eq. (45) reduces the corresponding integral
eigenvalue problem to a matrix eigenvalue problem involving an RHε × RHε Hermitian matrix.

By partitioning the first nρ eigenvalues�O
p(i)(0), i = 1, . . . , nρ ≤ N, into a sequence of dual segments (indexed by α = 1, 2, . . .),

each containing uninterrupted zeros (of the length Mα) followed by uninterrupted non-zeros (of the length Nα), it is then easy to
deduce that for each segment, for example at the α-th one, the number of non-zero products (�ρ

i (0) −�
ρ
j (0))(�O

p(i)(0) −�O
p(j)(0))

involving Mα zero values for �O
p(i)(0) in Eq. (44) is 2Mαn

α
O, whereas that involving Nα non-zero values for �O

p(i)(0) is

Nα (2Kα − Nα − 1). Here
∑

∀α{Mα + Nα} = nρ gives the total length of the sequence, nαO = nO − ∑α−1
β=0 Nβ is the remain-

ing number of non-zero values �O
p(i)(0) beyond the (α− 1)-th segment in the sum over the index j in Eq. (44), and Kα =

N − ∑α−1
β=1

{Mβ + Nβ

} − Mα is the total number of the remaining terms, excluding Mα zeros of �O
p(i)(0) in the α-th segment.

Thus, the rank Rc of the Hessian at an arbitrary critical point can be computed from

Rc =
∑
∀α

{
2Mαn

α
O + Nα(2Kα − Nα − 1)

} ≤ RHε . (47)



234 T.-S. Ho, H. Rabitz / Journal of Photochemistry and Photobiology A: Chemistry 180 (2006) 226–240

From Eq. (47), it follows that Rc = RHε = N(N − 1) when nρ = nO = N, in agreement with a simple number counting of
all non-zero terms in Eq. (44). An analysis of the eigenvalues of the Hessian Hε(t, t′) will be presented at various critical points,
including at and away from the global maximum and minimum. A symmetric, negative (positive) semi-definite Hessian Hε(t, t′)
will possess only negative (positive) non-zero eigenvalues [36], which is the case at the global maximum (minimum) to be discussed
below.

3.2.1. Hessian at the global maximum
At the global maximum, �O

i (T ) = �O
i (0), i = 1, . . . , N, and from Eq. (44), the Hessian Hε(t, t′) can be written as

Hε(t, t′) = − 2

�2

∑
i

∑
j>i

(
�

ρ
i (0) −�

ρ
j (0)

)
(�O

i (0) −�O
j (0)) ×

(
〈i|µρ(t)|j〉
〈i|µρ(t′)|j〉
 + 〈i|µρ(t)|j〉�〈i|µρ(t′)|j〉�

)
,

(48)

which is a continuous symmetric kernel function of negative semi-definite type, since the inequality

〈v|Hε|v〉 ≡
∫ T

0

∫ T

0
v∗(t)Hε(t, t′)v(t′) dt dt′

= − 2

�2

∑
i

∑
j>i

(
�

ρ
i (0) −�ρ

j (0)
)

(�O
i (0) −�O

j (0)) ×
{∣∣∣∣

∫ T

0
〈i|µρ(t)|j〉
v(t) dt

∣∣∣∣
2

+
∣∣∣∣
∫ T

0
〈i|µρ(t)|j〉�v(t) dt

∣∣∣∣
2
}

≤ 0

(49)

holds for an arbitrary function v(t), using the fact that (�ρ
i (0) −�

ρ
j (0)) ≥ 0 and (�O

i (0) −�O
j (0)) ≥ 0, ∀j > i. In Eq. (48), the

index i is carried out over only those non-vanishing �ρ
i ’s and �O

i (0)’s, while the index j is carried out from j = i+ 1 to N,
thus, the maximum number (i.e., rank) of the independent terms involved in the Hessian (note that here in Eq. (47), α = 1, 2,
M1 = 0, N1 = min{nρ, nO}, n1

O = nO, K1 = N, M2 = max{nρ − nO, 0}, N2 = 0, n2
O = nO − N1, and K2 = N − N1 − M2)

can be expressed as

RM = N1(2N − N1 − 1) = n<(2N − n< − 1) ≥ Rc, (50)

where n< = min{nρ, nO}.
The Hessian at the global maximum has a rank of at most RM, and it possesses at most RM non-zero, negative eigen-

values σ1 ≤ σ2 ≤ · · · ≤ σRM ≤ 0 (note that |σ1| ≥ |σ2| ≥ · · · ≤ |σRM | ≥ 0) associated with RM orthonormal eigenfunctions
u1(t), u2(t), . . . , uRM (t). In addition, it contains an infinite dimensional null space spanned by eigenfunctions associated with
its infinite number of zero eigenvalues. As a result, the Hessian at the global maximum can be expediently expanded
as

Hε(t, t′) = −
RM∑
k=1

|σk|u∗
k(t)uk(t

′), (51)

in terms of the eigenfunctions uk(t) with non-zero eigenvalues σk (≤ 0). The rank for the physical examples that were adopted in
enumerating the number of the non-zero critical point values in Section 2 can be readily computed from Eq. (50): (i) RM = 2N − 2
when nρ = 1 and nO > 1, (ii) RM = 2N − 2 when nρ > 1 and nO = 1, (iii) RM = N(N − 1) when nρ = nO = N, and (iv)
RM = 2N − 2 when nρ = nO = 1 [22].

The diagonal elements of Eq. (48) satisfy

Hε(t, t) = − 2

�2

∑
i

∑
j>i

(�ρ
i (0) −�

ρ
j (0))(�O

i (0) −�O
j (0)) |〈i|µρ(t)|j〉|2 ≤ 0, (52)

which is negative semi-definite and can be shown to be bounded from below

Hε(t, t) ≥ − 2

�2�
ρ
1(0)�O

1 (0)
∑
i

∑
j>i

|〈i|µρ(t)|j〉|2

≥ − 2

�2�
ρ
1(0)�O

1 (0)
∑
i

∑
j

|〈i|µρ(t)|j〉|2 = − 2

�2�
ρ
1(0)�O

1 (0)
∑
i

〈i|µρ(t)µρ(t)|i〉

= − 2

�2�
ρ
1(0)�O

1 (0)‖µρ(t)‖2 = − 2

�2�
ρ
1(0)�O

1 (0)‖µ‖2 ≥ − 2

�2�
O
1 (0)‖µ‖2, (53)
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where Eq. (10) was used in the last step. From Eqs. (51) and (53) as well as using the orthonormal relation
∫ T

0 u∗
k(t)u�(t) dt = δk�,

the trace of the corresponding Hessian Tr(Hε) ≡ ∫ T
0 Hε(t, t) dt = −∑RM

k=1 |σk| is given as

Tr(Hε) = − 2

�2

∑
i

∑
j>i

(�ρ
i (0) −�

ρ
j (0))(�O

i (0) −�O
j (0))

∫ T

0
|〈i|µρ(t)|j〉|2 dt ≥ −2T

�2 �
O
1 (0)‖µ‖2, (54)

which is also negative and bounded from below.

3.2.2. Hessian at the global minimum
Likewise, at the global minimum we have the relation �O

i (T ) = �O
N−i+1(0), i = 1, . . . , N. From Eq. (44), the corresponding

Hessian Hε(t, t′) can be written as

Hε(t, t′) = − 2

�2

∑
i

∑
j>i

(�ρ
i (0) −�

ρ
j (0))(�O

N−i+1(0) −�O
N−j+1(0))

×
(
〈i|µρ(t)|j〉
〈i|µρ(t′)|j〉
 + 〈i|µρ(t)|j〉�〈i|µρ(t′)|j〉�

)
, (55)

which, noting that �O
N−i+1(0) −�O

N−j+1(0) ≤ 0 ∀j > i, leads to the inequality

〈v|Hε|v〉 = − 2

�2

∑
i

∑
j>i

(�ρ
i (0) −�

ρ
j (0))(�O

N−i+1(0) −�O
N−j+1(0))

×
{∣∣∣∣

∫ T

0
〈i|µρ(t)|j〉
v(t) dt

∣∣∣∣
2

+
∣∣∣∣
∫ T

0
〈i|µρ(t)|j〉�v(t) dt

∣∣∣∣
2
}

≥ 0, (56)

for an arbitrary function v(t). Thus, the Hessian in Eq. (55) is a continuous symmetric kernel of positive semi-definite type, and
naturally all of the non-zero eigenvalues of the Hessian at the global minimum are positive numbers. At the global minimum, we
have α = 1, M1 = min{N − nO, nρ}, N1 = max{nρ + nO −N, 0}, n1

O = nO and K1 = N − M1 in Eq. (47), thus the rank Rm of
the corresponding Hessian can be expressed as

Rm =
{

2nρnO if nρ + nO ≤ N,

2nρnO − (nρ + nO −N)(nρ + nO −N + 1) if nρ + nO > N.
(57)

The HessianHε(t, t′) at the global minimum possesses at mostRm(≤ Rc) non-zero, positive eigenvalues σ1 ≥ σ2 ≥ · · · ≥ σRM ≥
0, as well as infinitely many zero eigenvalues. For example in the Pi→f control landscape nρ = nO = 1, and at the global minimum
Pi→f = 0 the only term in Eq. (55) that is non-zero corresponds to i = 1 and j = N. Thus, the corresponding Hessian

Hε(t, t′) = 2

�2�
ρ
1(0)�O

1 (0)
(
〈1|µ(t)|N〉
〈1|µ(t′)|N〉
 + 〈1|µ(t)|N〉�〈1|µ(t′)|N〉�

)
, (58)

has at most the rank RM = 2 for some non-zero control field ε(t) [22]. This result means that when starting out at low yield with an
initial control, there will be at most two coordinated directions in the space of control fields to lift the yield of Pi→f . The diagonal
elements of the Hessian at the global minimum, i.e. Eq. (48), are positive and bounded from above (cf., Eq. (53)) by the inequality

0 ≤ Hε(t, t) ≤ 2

�2�
O
1 (0)‖µ‖2, (59)

and the corresponding trace is bounded (cf., Eq. (54)) by the inequality

0 ≤ Tr(Hε) ≤ 2T

�2 �
O
1 (0)‖µ‖2. (60)

3.2.3. Hessian at the local critical points
At a critical point away from the global maximum and global minimum, the corresponding Hessian Hε(t, t′) is neither positive

nor negative definite, since for an arbitrary function v(t) the expression

〈v|Hε|v〉 = − 2

�2

∑
i

∑
j>i

(�ρ
i (0) −�

ρ
j (0))(�O

p(i)(0) −�O
p(j)(0)) ×

{∣∣∣∣
∫ T

0
〈i|µρ(t)|j〉
v(t) dt

∣∣∣∣
2

+
∣∣∣∣
∫ T

0
〈i|µρ(t)|j〉�v(t) dt

∣∣∣∣
2
}

(61)

can be either negative or positive depending on the temporal behavior of the function v(t). Note that any permutation p(i) other
than p(i) = i (i.e., 1 → 1, 2 → 2, . . . , i → i, . . . , N → N for the global maximum) and p(i) = N − i+ 1 (i.e., N → 1, N − 1 →
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2, . . . , N − i+ 1 → i, . . . , 1 → N for the global minimum) can render at least one positive and one negative value for the quantity
(�O

p(i)(0) −�O
p(j)(0)) in the double-sum in Eq. (61). As a result, Eq. (61) can be written as a sum of a negative part and a positive

part, namely

〈v|Hε|v〉 = 〈v|Hε|v〉− + 〈v|Hε|v〉+, (62)

where the negative part is

〈v|Hε|v〉− = − 2

�2

∑
i

∑
j>i

+ (
�

ρ
i (0) −�

ρ
j (0)

)(
�O
p(i)(0) −�O

p(j)(0)
)

+

×
{∣∣∣∣

∫ T

0
〈i|µρ(t)|j〉
+v(t) dt

∣∣∣∣
2

+
∣∣∣∣
∫ T

0
〈i|µρ(t)|j〉�+v(t) dt

∣∣∣∣
2
}
< 0 (63)

and the positive part is

〈v|Hε|v〉+ = − 2

�2

∑
i

∑
j>i

− (
�

ρ
i (0) −�

ρ
j (0)

)(
�O
p(i)(0) −�O

p(j)(0)
)

−

×
{∣∣∣∣

∫ T

0
〈i|µρ(t)|j〉
−v(t) dt

∣∣∣∣
2

+
∣∣∣∣
∫ T

0
〈i|µρ(t)|j〉�−v(t) dt

∣∣∣∣
2
}
> 0. (64)

The labels “+” and “−”, respectively, denote terms that correspond to positive and negative values of (�O
p(i)(0) −�O

p(j)(0)), i.e.,

(�O
p(i)(0) −�O

p(j)(0))+ > 0 and (�O
p(i)(0) −�O

p(j)(0))− < 0, since (�ρ
i (0) −�

ρ
j (0)) > 0 for all j > i.

The assumption that the real functions 〈i|µρ(t)|j〉
 and 〈i|µρ(t)|j〉� for different i and j are linearly independent makes it
possible, for example, via the Gram-Schmidt orthogonalization procedure [37], to find a function v+(t) orthogonal to all the functions
〈i|µρ(t)|j〉+, i.e.,

∫ T
0 〈i|µρ(t)|j〉
+v+(t) dt = 0 and

∫ T
0 〈i|µρ(t)|j〉�+v+(t) dt = 0, such that 〈v|Hε|v〉− = 0, producing 〈v|Hε|v〉 > 0.

Similarly, it is possible to find a function v−(t) orthogonal to all the functions 〈i|µρ(t)|j〉−, i.e.,
∫ T

0 〈i|µρ(t)|j〉
−v−(t) dt = 0 and∫ T
0 〈i|µρ(t)|j〉�−v−(t) dt = 0, such that 〈v|Hε|v〉+ = 0, producing 〈v|Hε|v〉 < 0. As a result, any Hessian evaluated at a critical point,

except at the global extrema, is indefinite and corresponds to a saddle point. Thus, no suboptimal false extrema traps exist in the
〈O(T )〉 control landscape. The actual numbers of negative and positive eigenvalues of the Hessian at the critical points may fluctuate
between the global maximum and minimum.

From Eq. (32), as the expectation value 〈O(T )〉 drops, the number of terms in the negative part 〈v|Hε|v〉− in Eq. (63) also drops,
while the number of terms in the positive part 〈v|Hε|v〉+ in Eq. (64) grows. As a result, it is expected that the number of all non-
zero negative eigenvalues of the Hessian at the global maximum 〈O(T )〉 = ∑N

i=1�
O
i (0)�ρ

i (0) will decrease from RM. This would
be accompanied by an increase of the number of non-zero positive eigenvalues when 〈O(T )〉 proceeds downward from its global
maximum to lower values at the intermediate critical saddle points. Eventually, the number of the non-zero eigenvalues (which finally
become all positive) drops to at most Rm as the value of 〈O(T )〉 reaches its the global minimum 〈O(T )〉 = ∑N

i=1�
O
N−i+1(0)�ρ

i (0).
This observation is in agreement with the results from earlier numerical simulations [28] based on the matrix elements of the unitary
matrix U(T, 0), cf., Eqs. (19)–(21).

3.3. Quantum control robustness at the global maximum

In the robustness analysis below achieving the global maximum of 〈O(T )〉 will be taken as the objective; a similar analysis applies
to seeking the global minimum as the objective. The Hessian at the global maximum of 〈O(T )〉 not only possesses at most RM
non-positive eigenvalues, but also infinitely many zero eigenvalues (and associated eigenfunctions). As the sum of these eigenvalues
[see Eq. (54)], i.e., the trace of the Hessian, is bounded by −(2T/�2)�O

1 (0)‖µ‖2, it is evident that as the Hilbert space dimension
N increases then RM also generally rising too, with each individual non-zero eigenvalue likely taking on an ever smaller value, i.e.
the average eigenvalue of the Hessian falls off as ∼ 1

RM
. Furthermore, it is readily seen that around the global control maximum of

〈O(T )〉, any small perturbation (i.e., noise) δε(t) in the control field ε(t) yields a deviation δ〈O(T )〉 in the optimal yield

δ〈O(T )〉 ≈ 1

2

∫ T

0

∫ T

0
δε(t)Hε(t, t′)δε(t′) dt dt′ = −1

2

∫ T

0

∫ T

0
δε(t)

(RM∑
k=1

|σk|u∗
k(t)uk(t

′)

)
δε(t′) dt dt′

= −1

2

RM∑
k=1

|σk| |(δε, uk)|2, (65)
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where Eq. (51) was used in the second step and (δε, uk) = ∫ T
0 δε(t)uk(t) dt is the projection of the control field noise δε(t) in the

direction of the k-th eigenfunction uk(t) of the Hessian Hε(t, t′) at the global maximum.
From Eq. (65), it is evident that in the proximity of the global maximum the observable 〈O(T )〉 is most sensitive to a field

perturbation (including noise) occurring along the direction (in the infinite dimensional control field space) specified by the Hessian
eigenfunction, say u1(t), that has the largest absolute (i.e., the most negative) eigenvalue |σ1| (≥ |σ2| ≥ · · · ≤ |σRM | ≥ 0). In general,
at the critical points (including the global maxima/minima and saddles), the Hessian eigenfunctions and their corresponding eigen-
values dictate how the controlled quantum dynamics responds to field changes: A field variation along an eigenfunction will have
a larger impact on the observable for an eigenfunction having an eigenvalue of greater magnitude. A negative (positive) eigenvalue
corresponds to an upward (downward) change in the value of the observable 〈O(T )〉 if the control field is increased in the direction
of the associated eigenfunction. Away from the critical points, the Hessian eigenfunctions (assumed distinct) form an orthogonal and
conjugate set of directions, i.e., 〈uk|u�〉 ≡ ∫ T

0 u∗
k(t)u�(t) dt = 0 and 〈uk|Hε|u�〉 ≡ ∫ T

0

∫ T
0 u∗

k(t)Hε(t, t′)u�(t′) dt dt′ = 0 for k �= �. As
a result, these eigenfunctions (and their eigenvalues), in conjunction with the corresponding gradients, contain important topological
information for performing effective searches, in particular with the Newton methods [38] seeking the globally optimal control field.

Based on Eq. (54) and the reasonable assumption that the control field noise is expected to be equally dispersed along any of the
eigenvectors of the Hessian, Eq. (65) can be approximated as

δ〈O(T )〉 ≈ −1

2

σ2
δε

RM

RM∑
k=1

|σk| ≥ −T�
O
1 (0)‖µ‖2

�2

σ2
δε

RM
, (66)

where RM = n<(2N − n< − 1) and |(δε, uk)|2 ≈ σ2
δε/RM, with σ2

δε = (δε, δε) = ∑RM
k=1 |(δε, uk)|2 being the mean square value of

δε(t). The interpretation of the result in Eq. (66) calls for consideration of whether σ2
δε has a dependence on N, especially as N rises.

In principle, σ2
δε could depend on N, considering that more energy in the control could be required to manipulate systems of higher

complexity (i.e., larger N). Practical considerations in realistic applications likely will employ limited laser energy regardless of the
system Hilbert space dimension N, which is consistent with general operations found in the increasing number of successful control
experiments of ever more complex systems [10–18]. Thus, it is reasonable to expect that σ2

δε is essentially a system invariant, or
at most slowly varying in N. To this end, we may conclude the important result from Eq. (66) that control solutions at the global
maximum value of 〈O(T )〉 have an inherent degree of robustness, which also tends to increase (or in the worst case remain neutrally
stable) as the Hilbert space dimension rises. This behavior is very attractive for attaining practical control, as noise is inevitably
present in the laboratory.

4. Conclusion

This paper presents a general quantum control landscape analysis of 〈O(T )〉 = Tr(ρ(T )O) directly in terms of the physically
relevant control field ε(t) including an elaboration of the topology around the critical points of an arbitrary physical observable O.
The basic conclusion of this work, that no false suboptimal traps exist, is coincident with the previous analysis of the special case of
controlled transition probability Pi→f dynamics [19–22]. The additional suboptimal critical points in the general case of 〈O(T )〉 are
all saddle points, posing no physical obstacle towards attaining a control field that permits reaching the ultimate maximum(minimum)
value of 〈O(T )〉. Furthermore, the slope towards, and the curvature at, the critical points are bounded by the magnitude of the transition
dipole moment. The trace of the Hessian at the global maximum (minimum) being bounded from below (above) has the important
feature of implying inherent robustness, and possibly of an enhanced degree, with increasing Hilbert space dimension. In general,
all of these results reveal the existence of remarkably attractive quantum control landscapes where the search efforts will encounter
gentle slopes as well as global extrema that are robustly flat. This behavior suggests that various, even simple, algorithms should be
able to search through the accessible controls to find viable solutions, and secondly, a respectable degree of robustness to laboratory
noise should exist. The many successful control experiments [10–18] are certainly consistent with this analysis.

The topology of the 〈O(T )〉 landscape, as in the special case of control over Pi→f [22], indicates that perhaps the current main
limiting factor in the control of quantum systems is the presence of inherent physical constraints restricting access to suitable optimal
controls. That is, the presence of significant constraints on the control could easily lead to tortuous search pathways being taken
across the landscape and possibly false traps being generated due to a lack of sufficient freedom in the controls. Other physical issues,
including the presence of decoherence and control noise, at least of a weak nature, during the controlled dynamics, will also enter,
and they can be viewed as producing a lower resolution landscape through statistical averaging, rather than a fundamental change
in its topological features. A lack of full controllability could also limit access to certain domains of the landscape, but currently
constraints on the controls are more likely the significant limiting factor. More systematic studies of many interrelated questions and
issues (e.g., the nature of control mechanisms [39–44]) in the general area of controlled quantum dynamics phenomena are needed.
These studies should also include an analysis of the impact of the topological saddle features on the efficiency of various control
search algorithms.
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In summary, this work presents the basis to understand the reasons for the mounting successes of optimal control experiments
in the most general mixed quantum state setting, despite what would appear to be an insurmountable encounter with the curse of
dimensionality producing a potentially exploding number of possible control experiments to perform. Perhaps most importantly, the
conclusions from the generic topology of the quantum control landscapes provides the foundation to project ahead that many more
positive quantum control experimental outcomes may be expected, even in manipulating complex systems. Having adequate controls
is a central issue in executing the experiments to take advantage of the simple landscape topology. The many existing laboratory
control successes, often with very constrained controls, bodes well for even better results in the future as the control field sources
improve.
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Appendix A. General Hessian expression at the critical points

In the appendix, we give a detailed derivation that results in a fully symmetric Hessian expression Eq. (44) at the critical points
satisfying Eq. (25). The resultant symmetric Hessian Hε(t, t′) is explicitly written as an expansion of the matrix elements of �ρ(0),
�O(0), and µ(t). Eq. (44) is used for the Hessian analysis that follows. From Eq. (43),

Hε(t, t′) = − 1

�2 Tr
(
[[O(T ),µ(t)], µ(t′)]ρ(0)

) = − 1

�2 Tr
(

[[O(T ), µ(t)], µ(t′)]Uρ�
ρ(0)U†

ρ

)

= − 1

�2

nρ∑
i=1

�
ρ
i (0)〈i|

{
U†

ρ

[
[O(T ), µ(t)] , µ(t′)

]Uρ

}
|i〉, (A.1)

by noting that �ρ(0) contains only diagonal matrix elements �ρ
i (0), i = 1, . . . , N. Eq. (A.1) can be further expanded as

Hε(t, t′) = − 2

�2

nρ∑
i=1

�
ρ
i (0) 


{
〈i|U†

ρ[O(T ), µ(t)]µ(t′)Uρ|i〉
}

= − 2

�2

nρ∑
i=1

�
ρ
i (0) 


{
〈i|U†

ρ

{
O(T )µ(t)µ(t′) − µ(t)O(T )µ(t′)

}Uρ|i〉
}

= − 2

�2

nρ∑
i=1

�
ρ
i (0) 


{
〈i|

{
�O(T )U†

ρµ(t)µ(t′)Uρ − U†
ρµ(t)Uρ�

O(T )U†
ρµ(t′)Umρ

}
|i〉

}
,

= − 2

�2

nρ∑
i=1

�
ρ
i (0) 


{
�O
i (T )〈i|U†

ρµ(t)µ(t′)Uρ|i〉 − 〈i|U†
ρµ(t)Uρ�

O(T )U†
ρµ(t′)Umρ|i〉

}

= − 2

�2

nρ∑
i=1

�
ρ
i (0) 


{
�O
i (T )〈i|µρ(t)µρ(t′)|i〉 − 〈i|µρ(t)�O(T )µρ(t′)|i〉

}
(A.2)

where 
 denotes real part, µρ(t) ≡ U†
ρµ(t)Uρ, and the relation O(T ) = Uρ�

O(T )U†
ρ, with�O(T ) a diagonal matrix, has been used.

Additional manipulations reduce Eq. (A.2) to the following

Hε(t, t′) = − 2

�2

nρ∑
i=1

�
ρ
i (0) 


⎧⎨
⎩�O

i (T )
N∑
j=1

〈i|µρ(t)|j〉〈j|µρ(t′)|i〉 −
N∑
j=1

N∑
k=1

〈i|µρ(t)|j〉〈j|�O(T )|k〉〈k|µρ(t′)|i〉
⎫⎬
⎭

= − 2

�2

nρ∑
i=1

�
ρ
i (0) 


⎧⎨
⎩�O

i (T )
N∑
j=1

〈i|µρ(t)|j〉〈j|µρ(t′)|i〉 −
N∑
j=1

�O
j (T )〈i|µρ(t)|j〉〈j|µρ(t′)|i〉

⎫⎬
⎭

= − 2

�2

nρ∑
i=1

�
ρ
i (0)

N∑
j �=i


{〈i|µρ(t)|j〉〈j|µρ(t′)|i〉}(
�O
i (T ) −�O

j (T )
)
. (A.3)
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The double summations in Eq. (A.3) can be rearranged as

Hε(t, t′) = − 2

�2

nρ∑
i=1

N∑
j>i

{
�

ρ
i (0) 
 (〈i|µρ(t)|j〉〈j|µρ(t′)|i〉) −�

ρ
j (0) 
 (〈j|µρ(t)|i〉〈i|µρ(t′)|j〉)}(

�O
i (T ) −�O

j (T )
)
,

(A.4)

which, after using the relation 
 (〈i|µρ(t)|j〉〈j|µρ(t′)|i〉) = 
 (〈j|µρ(t)|i〉〈i|µρ(t′)|j〉), can be succinctly written in a fully symmetric
expression:

Hε(t, t′) = − 2

�2

nρ∑
i=1

N∑
j>i

(�ρ
i (0) −�

ρ
j (0))(�O

i (T ) −�O
j (T )) 
(〈i|µρ(t)|j〉〈j|µρ(t′)|i〉).

= − 2

�2

nρ∑
i=1

N∑
j>i

(�ρ
i (0) −�

ρ
j (0))(�O

i (T ) −�O
j (T ))

(
〈i|µρ(t)|j〉
〈i|µρ(t′)|j〉
 + 〈i|µρ(t)|j〉�〈i|µρ(t′)|j〉�

)

= − 2

�2

nρ∑
i=1

N∑
j>i

(�ρ
i (0) −�

ρ
j (0))(�O

p(i)(0) −�O
p(j)(0))

(
〈i|µρ(t)|j〉
〈i|µρ(t′)|j〉
 + 〈i|µρ(t)|j〉�〈i|µρ(t′)|j〉�

)
,

(A.5)

which gives Eq. (44), with 〈i|µρ(t)|j〉
 ≡ 
(〈i|µρ(t)|j〉) and 〈i|µρ(t)|j〉� ≡ �(〈i|µρ(t)|j〉). In deriving Eq. (A.5) we have used Eq.
(30).
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